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Abstract
We study, in single quantum dot (QD) luminescence, the temperature-dependent broadening
mechanism due to the coupling between localized excitons and acoustic phonons as well as the
environment surrounding the QD system. As a treatment of the interaction between the QD
system and the environment, a configuration of excitonic eigenenergies is introduced. Using the
Green’s function method, analytical formulae of the lineshape of zero-phonon lines (ZPL) are
given. The numerical results show that phonons inducing initial fast decay contributes to the
background wings of the spectra leading to a wings-asymmetry photoluminescence (PL)
spectra. Our model gives a semiquantitative description of the underlying broadening
mechanism and is helpful in understanding the origin of the experimental results for the
temperature dependence of the ZPL in self-assembled QDs.

1. Introduction

Semiconductor quantum dots (QDs), so-called artificial atoms,
have attracted considerable interest as mesoscopic model
systems and prospective building blocks of the ‘quantum
computer’. The interaction between excitons and phonons
in semiconductor quantum dots determines the temperature
dependence of the optical response and contributes to the
dephasing of the optically excited quantum states of the dots.
These optical properties are of current interest in connection
with the proposed use of quantum dots in implementations of
quantum computing.

At low temperatures the photoluminescence (PL) spectra
of single dots have a sharp central feature and a broad
background [1–5]. The problem of phonon effects on
the optical spectra associated with bound electronic states
in a crystal was first treated in the context of the
spectra of impurities [6–8] and bound excitons in bulk
semiconductors [9]. In terms of a perturbation treatment of
the electron–acoustic phonon interaction, the central peak in
the spectrum is associated with the term involving no phonons
and commonly referred to as the zero-phonon line (ZPL). It is
an optical analog of the Mössbauer line in the impurity nuclei

transitions [9]. This phenomenon was experimentally observed
in many single-dot studies. Besides the photoluminescence
experiments, time-resolved spectroscopy is employed to study
the polarization decay, i.e. the dephasing time which is
related to the inverse of the ZPL width [2, 10]. Simultaneous
measurements of the dephasing and the population decay for
localized excitons in narrow GaAs quantum wells (QWs) show
that the elastic interaction with acoustic phonons contributes
to dephasing [11] with increasing temperature. Such phase
decoherence is called pure dephasing. Generally, for a
phenomenological treatment, pure dephasing corresponds to
the so-called Markovian process for the elastic exciton–phonon
(ex–ph) interaction [13].

The experimentally observed lineshapes have a linewidth
that was found to increase linearly with temperature at
T < 50 K in many single-dot studies [1–4]. In
recent four-wave mixing experiments on arrays of dots, the
temperature dependence of the linewidth was found to be
of an exponential activated form rather than linear [14, 15].
Two different mechanisms involving off-diagonal transitions
between quantum dot electronic states have been proposed to
explain the ZPL broadening, real transitions from ground to
excited states in larger dots [16] and virtual transitions giving
higher-order terms in ex–ph interactions [17].
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In this paper, in order to explain the observed increasing
FWHM (full width at half-maximum) with increasing
temperature, we introduce an additional phenomenological
phase damping linearly proportional to time [11] and a
linear coupling of excitons and phonons as a treatment of
the interactions in the broadened system. Theoretically, an
independent boson model [18, 19] has often been used for the
ex–ph interaction, and it is sufficient to describe the phonon
wings’ background phenomenon in general quantum dots and
the satellite peaks in the optical absorption of nanowire-
based quantum dots [20]. On the other hand, to explain
the ZPL broadening, several delicate approaches have been
pursued in which quadratic couplings to phonons [21–24] and
phonon linewidths have been introduced [5, 25]. However, the
temperature-dependent lineshape due to the inhomogeneously
broadening effect, e.g. exciton density distribution, has not
yet been discussed, the origin of which may lead to the
power broadening [26, 27] in the luminescence. Except for
the ex–ph interaction, many other scatterings contribute to
the ZPL, e.g. (i) scattering with elastic and inelastic exciton–
exciton (ex–ex) and exciton–electron (ex–e) scattering, etc,
and (ii) scattering at impurities and other lattice defects. For
a phenomenological description of such an inhomogeneously
broadening effect, we assume that the exciton has a slightly
different eigenenergy distributed over an interval γ0 due to
coupling to some ‘bath’ [11, 12]. Consequently we obtain
the FWHM which explains the origin of the very different
experimental results for the temperature dependence of the
ZPL in self-assembled QDs and the emission spectra which
show a small asymmetry rather than a symmetric Lorentzian
line at high temperature.

2. Theory and calculation

To describe the QDs system, we consider the interactions
between a single exciton and acoustic phonons. Due to the
influence of the circumstance of the QDs system as in the
statement of the previous section, the exciton retarded Green’s
function can be given by

G(0)(t) = 〈B(t)B†(0)〉 = −i exp(−iω0t − γ0t),

t > 0, (1)

where B†(B) is the creation (annihilation) operators of the
ground state exciton and ω0 is the center frequency of the
exciton. Our assumption is similar to [5] and [25] where finite
phonon lifetime is introduced as a treatment of the influence
of the interface roughness. We describe the ex–ph interaction
under the independent boson model and the general interaction
Hamiltonian for a coupled ex–ph system is written as

B† Bq Mq(a
†
q + aq), (2)

where a†
q(aq) and Mq are the creation (annihilation) operators

of the phonon with momentum q and the matrix element,
respectively. Following [25], the first-order approximate
solution using the method of linked cluster expansion is
employed in the derivation of the exciton Green’s function
and the general Feynman diagram is shown in figure 1(a),

Figure 1. The Feynman diagram for the interaction between the
damping exciton and the acoustic phonons. In (a), the solid line and
the dashed curve represent the damping exciton Green’s function and
the free phonon Green’s function, respectively. In (b), the solid line,
the dashed curve and the cross with a few dashed lines represent the
free exciton Green’s function, the free phonon Green’s function and
other scatterings, respectively.

where the solid line and the dashed curve represent a damping
exciton Green’s function and a free phonon Green’s function,
respectively. It is sufficient to describe the multiple-phonon
effects once the method of linked cluster expansion is used.
The involvement of the factor exp(−γ0t) in equation (1)
describes a mixed effect of ex–ph interactions and other
scatterings. However, the cross effects, the Feynman diagrams
of which are shown in figure 1(b), are not included in the linked
cluster expansion.

Based on figure 1(a), the first-order term in the linked
cluster expansion and the exciton retarded Green’s function is
given by [19]

W1(t) = −
∑

q

|Mq |2
∫ t

0
dt1

∫ t

0
dt2 D(q, t1 − t2)G(0)(t),

G(1)(t) = G(0)(t) exp[W1(t)G(0)(t)], t > 0,

(3)
where D(q, t) is the phonon Green’s function. The results
in [25] could be generalized once phonon damping effects are
included in the expression of D(q, t):

D(q, t) = −i[(nq + 1) exp(−iωq t − γq t)

+ nq exp(iωq t − γq t)], t > 0, (4)

where γq is the inverse of the phonon lifetime and nq =
[exp(h̄ωq/kBT ) − 1]−1. In a similar way, we employ the
Green’s function G(0)(t). Then the main result of this paper
is given by

f (t) = W1(t)G(0)(t)

= −1 − e−iωq t − iωq t

ω2
q

(nq + 1) − 1 − eiωq t + iωq t

ω2
q

nq . (5)

The spectral function corresponding to the Fourier transform
of G(1)(t) could be pursued trivially. Nevertheless the overall
lineshape can be deduced by considering the short- and long-
time limit of f (t). At short times

f (t) → −γ 2
1 t2, (6)

where γ1 = [∑q
1
2 M2

q (2nq + 1)] 1
2 , while at long times

f (t) → −S + i�t, (7)
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Figure 2. The time-dependent amplitudes calculated for a flat disc-shaped CdTe/ZnTe quantum dot with a radius of 4 nm at several typical
temperatures and γ0.

where the terms which do not contribute to the ZPL width
are neglected [25] and the Huang–Rhys factor S and the

energy shift � are reduced to
∑

q
M2

q

ω2
q
(2nq + 1) and

∑
q

M2
q

ωq
,

respectively. Usually the γ1 is large enough and phonon
scattering adds a Gaussian broadened background to the
spectral function corresponding to the short-time response
of equation (3). The long-time response corresponds to a
Lorentzian lineshape with a renormalization factor Z [Z =
exp(−S)].

To analyze the overall time response in further detail we
evaluate a exponential-power decay [28] to fit the G(1)(t)
considering both the short- and long-time behavior. The
competent fitting function is given by

G(1)(t) ∼ Gapp(t) = Z exp(−r0t + i�t)

+ (1 − Z)
1

1 + γ 2
1 t2/(1 − Z) − Z(γ0 − i�)t/(1 − Z)

.

(8)

G(1)(t) is approximately expanded to two terms, the long-
time limit and fast decay, where Z and 1 − Z correspond to
the contributions of the two, respectively. We then deduce
the temperature-dependent amplitude, A(T ), and FWHM,
FWHM (T ), by Fourier transforming the approximate function
Gapp(t):

A(T ) = Z

γ0
+ π(1 − Z)3/2

γ1
exp(−�

√
1 − Z/γ1), (9)

FWHM(T ) = 2γ0

√√√√1 +
[

γ1 Z exp(�
√

1 − Z/γ1)

2πγ0(1 − Z)3/2
− 1

2

]−1

,

(10)

where the temperature dependence enters through γ1 and Z .
Obviously, the damping effect and ex–ph interaction are not

Table 1. Parameters used in the evaluation of the matrix element
Mq . m∗

e and m∗
h are the electron and hole effective mass, Dc and Dv

are the deformation potentials of the conduction and valence band, ρ
is the mass density, us is the angular averaged sound velocity of the
longitudinal acoustic phonon mode, �D is the Debye temperature
and λ0 is the in-plane electron–hole correlation parameter.

m∗
e m∗

h

Dc

(eV)
Dv

(eV)
ρ

(g cm−3)

us

(m s−1)
�D

(K)
λ0

(Å)

0.095 0.82 −5.0 1.0 5.51 4.0 × 103 158 42

coupling in equation (9) and A(T ) is also a sum of two terms,
the contribution of the long-time limit and the contribution of
the fast decay. But the mixed effects enter into FWHM through
the second term of the radicand in equation (10).

3. Results and discussion

The only remaining problem for the phonon contribution is to
calculate the matrix elements Mq . We consider a flat disc-
shaped CdTe/ZnTe quantum dot with a radius of 4 nm. Since
the elastic properties of the dot and matrix material are not
much different, we neglect its anisotropic dispersion relation
and use a 3D phonon model. The material parameters used in
the evaluation are shown in table 1 [3].

The time-dependent amplitudes are shown in figure 2 at
several typical temperatures and γ0. In figure 2(a), we plot
the long-time limit, short-time limit and |Gapp(t)|, as well
as the fast decay term (the second term of equation (8)).
With time developing, |Gapp(t)| behaves as a attenuated
Gaussian decay in the initial process, decreases more mildly
next and, after a few picoseconds, increases to a exponential
decay. The approximate function Gapp(t) reduces much more

3
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Figure 3. (a) The contrasts between the spectrum functions for the exciton Green’s function (solid curves) and the contributions of the fast
decay (dashed curves), short-time (dashed–dotted curves) and long-time (dotted curves) limits at T = 40 K and γ0 = 100 μeV. (b) The
temperature-dependent wing-asymmetries at γ0 = 150 μeV and the corresponding renormalization factors Z .

Figure 4. The normalized amplitude of the ZPL (solid curves) at five typical γ0 (50, 100, 150, 200 and 250 μeV) and the contribution of the
long-time limit (dotted curve). The inset illustrates the γ0-dependent slope.

gently within an initial fast damping time ∼ h̄
γ1

than the limit

behavior exp(−γ 2
1 t2). Such a behavior corresponds to plump

background wings beside the ZPL. In figure 2(b), |Gapp(t)| is
plotted at three pairs of data for comparison. The temperature
and γ0 dependence shows that increasing γ0 leads to the
enhancement of the ex–ph coupling.

The optical spectrum is given by the imaginary part of the
Fourier transform of G(t). It is composed of background wings

and a Lorentzian line with a peak shift � leading to a small
asymmetry in the high energy edge, as shown in figure 3(a).
Furthermore, the asymmetry depends on the renormalization
factor Z which decreases with increasing temperature as shown
in figure 3(b).

In figure 4, we find that the amplitude of the ZPL is almost
determined by the contribution of the long-time limit at low
temperature and is nearly linearly decreasing with increasing

4
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Figure 5. The temperature-dependent FWHM (solid curves) and the lines (dotted lines) at five typical γ0, and the γ0-dependent slope of the
fitting line (inset).

temperature. The inset of figure 4 shows the linear γ0

dependence, which could be deduced from the normalization
of A(T ).

Figure 5 shows the FWHM(T ) at five typical γ0. At
T = 0 K, the phonons contribute less than 1% to the FWHM
and FWHM(0) ≈ 2γ0. With increasing temperature, FWHM
seems to increase as a linear function of the temperature,
FWHM(T ) − FWHM(0) = αT . The linear coefficient α

has been evaluated by a linear fit, which is illustrated in
the inset of figure 5. At high temperature, the curves have
distinct divergence from the fitting lines especially at large
γ0 and approach an exponential activated form instead [29].
The temperature-dependent broadening has entirely profited
from the involvement of the second term of equation (8), the
corresponding spectrum function of which is illustrated as a
dashed line in figure 3(b).

To make our model more understandable, we also
calculate the matrix elements Mq for optical phonons. Below
T = 70 K, the temperature dependence of the lineshape
is insensitive to the coupling between optical phonons and
excitons for the factor 2nq + 1 ≈ 1. Thus, the optical
phonons just make an additional and temperature-independent
contribution to the lineshape. We evaluate Z for the polar
coupling between optical phonons and excitons and obtain
Z > 0.95. The minimum of Z is at T = 70 K and even larger
values are obtained for the deformation potential coupling.
Therefore, the renormalization factor Z approaches unity and
is nearly temperature-independent. For these reasons, we
have ignored the effect of coupling between optical phonons
and excitons. Furthermore, numerical results indicate that
optical phonons contribute only a few μeV to the total FWHM.
Such effects may be considered as a small portion of the
inhomogeneous broadening. Taking account of the localization
of the exciton so as to ignore the lattice defects, it can be seen

that ex–ex and ex–e scatterings could be the main issue for the
inhomogeneous broadening effect.

Comparing our results with the experiments on single
dots, the linear coefficient α is indeed smaller than that
reported in [3] for the QD, and [30] and [31] for a 18 Å
CdTe/Cd0.82Zn0.18Te QW. Such divergence could be due to the
neglect of the finite lifetime of phonons. However, the same
order (up to 50%) of the linear coefficient α is obtained in
our model, which indicates the importance of the coupling of
the inhomogeneous broadened effect and the acoustic phonons
scattering in single quantum dot luminescence.

4. Conclusions

Except for ex–ph interaction, many other scatterings could
influence the optical properties of excitons. Such an
inhomogeneous broadening effect is employed to obtain the
temperature-dependent FWHM in an ex–ph interactive QD
system. Using the Green’s function method, the emission
spectrum is obtained by introducing a phenomenological and
experimentally determined parameter γ0 and exhibits a small
wing-asymmetry, linear temperature-dependent amplitude
reduction and FWHM increase. Comparing the experimental
data [3] and the previous theoretical results [25], we
indicate the importance of the coupling of the inhomogeneous
broadened effect and acoustic phonon scattering in single
quantum dot luminescence.
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65 033313

[27] Stufler S, Ester P, Zrenner A and Bichler M 2004 Appl. Phys.
Lett. 85 4202

[28] Birkedal D, Leosson K and Hvam J M 2001 Phys. Rev. Lett.
87 227401

[29] Borri P, Langbein W, Woggon U, Schwab M, Bayer M,
Fafard S, Wasilewski Z and Hawrylak P 2003 Phys. Rev.
Lett. 91 267401

[30] Mayer E J, Pelekanos N T, Kuhl J, Magnea N and
Mariette H 1995 Phys. Rev. B 51 17263

[31] Seufert J, Weigand R, Bacher G, Kümmell T, Forchel A,
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